Cantitate/Preț
Produs

Low Dielectric Constant Materials for IC Applications: Springer Series in Advanced Microelectronics, cartea 9

Editat de Paul S. Ho, Jihperng Leu, Wei William Lee
en Limba Engleză Hardback – 14 noi 2002
Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for < 0.18 um process technology. Topics include: Organic dielectric materials, Inorganic dielectric materials, Composite dielectric materials, Metrology and characterization techniques, Integration, Reliability. This volume will be an invaluable resource for professionals, scientists, researchers and graduate students involved in dielectric technology development, materials science, polymer science, and semiconductor devices and processing.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 73851 lei  39-44 zile
  Springer Berlin, Heidelberg – 4 oct 2012 73851 lei  39-44 zile
Hardback (1) 74552 lei  39-44 zile
  Springer Berlin, Heidelberg – 14 noi 2002 74552 lei  39-44 zile

Din seria Springer Series in Advanced Microelectronics

Preț: 74552 lei

Preț vechi: 98095 lei
-24%

Puncte Express: 1118

Preț estimativ în valută:
14283 15472$ 12249£

Carte tipărită la comandă

Livrare economică 06-11 mai

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540678199
ISBN-10: 3540678190
Pagini: 332
Ilustrații: XIX, 310 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.59 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Advanced Microelectronics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Descriere

Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for < 0.18 um process technology. Topics include: Organic dielectric materials, Inorganic dielectric materials, Composite dielectric materials, Metrology and characterization techniques, Integration, Reliability. This volume will be an invaluable resource for professionals, scientists, researchers and graduate students involved in dielectric technology development, materials science, polymer science, and semiconductor devices and processing.

Cuprins

1 Overview on Low Dielectric Constant Materials for IC Applications.- 1.1 Introduction.- 1.2 Dielectric Constant and Bonding Characteristics.- 1.3 Material Properties and Integration Requirements.- 1.4 Characterization of Low-? Dielectrics.- 1.5 Porous Low-? Materials.- 1.6 Conclusion.- References.- 2 Materials Issues and Characterization of Low-? Dielectric Materials.- 2.1 Introduction.- 2.2 Thin-Film Material Characterization.- 2.3 General Structure-Property Relationships.- 2.3.1 Dielectric Constant.- 2.3.2 Thermal Properties.- 2.3.3 Moisture Uptake.- 2.3.4 Thermomechanical and Thermal Stress Properties.- 2.4 Fluorinated Polyimide: Effect of Chemical-Structure Modifications on Film Properties.- 2.5 Crosslinked and Thermosetting Materials.- 2.6 Parylene Polymers: Effect of Thermal History on Film Properties.- 2.7 Future Challenges.- References.- 3 Structure and Property Characterization of Low-? Dielectric Porous Thin Films Determined by X-Ray Reflectivity and Small-Angle Neutron Scattering.- 3.1 Introduction.- 3.2 Two-Phase Methodology.- 3.2.1 Experimental.- 3.2.2 Two-Phase Analysis Using the Debye Model.- 3.2.3 Results and Discussion.- 3.3 Three-Phase Methodology.- 3.4 Films with Ordered Porous Structure.- 3.5 Limits of SANS Characterization Methods.- 3.6 Future Developments.- 3.6.1 Contrast Variation SXR.- 3.6.2 Inhomogeneous Wall Composition.- 3.7 Conclusion.- References.- 4 Vapor Deposition of Low-? Polymeric Dielectrics.- 4.1 Introduction.- 4.2 Vapor-Phase Deposition and Polymerization on Substrates.- 4.3 Parylenes.- 4.3.1 Synthesis Review.- 4.3.2 Properties of Parylene-N.- 4.3.3 Mechanisms and Models of Parylene Polymerization.- 4.3.4 Integration Issues with Parylene-N.- 4.3.5 Synthesis and Properties of Parylene-F.- 4.3.6 Integration Issues with Parylene-F.- 4.4 Polynaphthalene and Its Derivatives.- 4.4.1 Experimental System for Polynaphthalene Synthesis.- 4.4.2 Properties of Polynaphthalene and Fluorinated Polynaphthalene.- 4.5 Teflon and Its Derivatives.- 4.5.1 Synthesis of Teflon-AF.- 4.5.2 Properties of Teflon-AF.- 4.5.3 Integration Issues with Teflon.- 4.6 Vapor-Deposited Polyimides.- 4.7 Prospects for Vapor-Depositable Low-? Polymers.- References.- 5 Plasma-Enhanced Chemical Vapor Deposition of FSG and a-C:F Low-? Materials.- 5.1 Introduction.- 5.2 FSG Films.- 5.2.1 Introduction.- 5.2.2 General Characteristics.- 5.2.3 HDP-CVD FSG Film.- 5.3 a-C:F Films.- 5.3.1 Introduction.- 5.3.2 Deposition of a-C:F by PE-CVD and Controlling Fluorine Concentration.- 5.3.3 Control of F/C Ratio by Helicon-Wave HDP-CVD.- 5.3.4 Mechanism of the Reduction of the Dielectric Constant of a-C:F.- 5.3.5 Signal-Delay Measurements of CMOS Circuits.- 5.3.6 Conclusion.- References.- 6 Porous Organosilicates for On-Chip Applications: Dielectric Generational Extendibility by the Introduction of Porosity.- 6.1 Introduction.- 6.2 Porous Silica.- 6.3 Organosilicates.- 6.4 Porogens.- 6.5 Porous Organosilicate Matrix Resins.- 6.6 Formation of Nanohybrids.- 6.7 Porous Organosilicates.- 6.8 Characterization of Porous Organosilicates.- 6.9 Conclusion.- References.- 7 Metal/Polymer Interfacial Interactions.- 7.1 Introduction.- 7.2 Experimental Methods.- 7.2.1 XPS and AES Analysis.- 7.2.2 XPS for Nucleation Modes.- 7.2.3 Other Surface-Science Techniques.- 7.2.4 Metal-Deposition Techniques.- 7.3 Metallization of Fluoropolymers.- 7.3.1 Metal Evaporation.- 7.3.2 Sputter Deposition.- 7.3.3 Aluminum MOCVD.- 7.3.4 Copper MOCVD.- 7.4 Polymers on Metals: Adhesion to Cu.- 7.4.1 Introduction to SiC films.- 7.4.2 Vinyl Silane-Derived Films on Cu.- 7.5 Conclusion.- References.- 8 Diffusion of Metals in Polymers and During Metal/Polymer Interface Formation.- 8.1 Introduction.- 8.2 Thermodynamic Considerations.- 8.3 Effect of Metal-Polymer Interaction on the Mobility of Metal Atoms.- 8.4 Surface Diffusion, Nucleation, and Growth of Metal Films.- 8.5 Diffusion and Aggregation.- 8.6 Atomic Diffusion.- 8.7 Conclusion.- References.- 9 Plasma Etching of Low Dielectric Constant Materials.- 9.1 Introduction.- 9.2 Technological Requirements and Patterning Approaches.- 9.2.1 Damascene Processing.- 9.2.2 Plasma Etching.- 9.2.3 Important Low Dielectric Constant Materials.- 9.3 Fluorocarbon-Based Etching Processes.- 9.3.1 Fluorine-Doped SiO2(SiOF), Hydrogen Silsequioxane (HSQ) and Methyl Silsequioxane (MSQ).- 9.3.2 Porous Silica Films.- 9.4 Directional Etching of Organic Low-? Materials.- 9.4.1 Hydrocarbon-Based Organic Materials: Etching of Olyarylene Ether (PAE-2) in Ar/O2/N2Gas Mixtures..- 9.4.2 Fluorocarbon-Based Organic Materials: Polytetrafluoroethylene.- 9.4.3 Hybrid Materials.- 9.5 Postetch Mask-Stripping and Via-Cleaning Processes.- 9.6 Conclusion.- References.- 10 Integration of SiLK Semiconductor Dielectric.- 10.1 Introduction.- 10.2 SiLK Semiconductor Dielectric.- 10.3 Subtractive Technologies.- 10.3.1 Introduction.- 10.3.2 Integration Flow for Subtractive Interconnects.- 10.3.3 Integration Unit Steps.- 10.3.4 Electrical Results.- 10.3.5 Conclusion.- 10.4 Damascene Technologies.- 10.4.1 Introduction.- 10.4.2 Embedded-Hardmask Approach for Dual Damascene.- 10.4.3 Dual Damascene Schemes with Multilayered Hardmasks.- 10.5 Cost-of-Ownership.- 10.6 Conclusion.- References.

Recenzii

From the reviews:
Praise for P.S. Ho, J. Leu, and W.W. Lee, Ed's, Low Dielectric Constant Materials for IC Applications
Electrical Insulation Magazine
"Because this volume contains an excellent overview of the current research and issues with low-k dielectric materials for IC applications along with comprehensive practical information, researches, material scientists, and polymer engineers working in the area of microelectronics will find this book a very valuable addition to their library."
"This text addresses the latest advances in low-k materials, thin film characterization, integration into copper interconnection processing, and reliability for microelectronics applications. … Because this volume contains an excellent overview of the current research and issues with low-k dielectric materials for IC applications along with comprehensive practical information, researchers, material scientists, and polymer engineers working in the area of microelectronics will find this book a very valuable addition to their library." (IEEE Electrical Insulation Magazine, Vol. 20 (2), March/April, 2004)
"This book addresses issues on the development, characterization and integration of low dielectric constant (k) materials for advanced on-chip interconnects. … this book illustrates in a comprehensive way the technological challenges brought by the introduction of low-k materials into semiconductor manufacturing. … Being intended to researchers and engineers active in the field of semiconductor processing, it can be used as an introductory book … . Highly appreciated." (Jean - Francois de Marneffe, Physicalia, Vol. 25 (4), 2003)

Textul de pe ultima copertă

Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for < 0.18 um process technology. Topics include: Organic dielectric materials, Inorganic dielectric materials, Composite dielectric materials, Metrology and characterization techniques, Integration, Reliability. This volume will be an invaluable resource for professionals, scientists, researchers and graduate students involved in dielectric technology development, materials science, polymer science, and semiconductor devices and processing.

Caracteristici

First one in the emerging field of low dielectric constant materials
There is worldwide a big need for such a book
Includes supplementary material: sn.pub/extras